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20
Extreme value theory

Syllabus objectives

4.5 Demonstrate how events of low frequency and high severity can be modelled.

4.6  Demonstrate how extreme value theory can be used to help model risks that have a
low probability.
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0 Introduction

Extreme value theory is covered in Subject CS2 and much of the material here repeats what is
covered in that subject, so you may find it helpful to recap on what you did there.

The importance of tail distributions and correlations has already been mentioned in
Module 15.  In this module, the idea is extended to consider the modelling of risks with low
frequency but high severity, including the use of extreme value theory.

Our first thought in modelling ‘extreme events’ might be to fit a distribution to past data and then
to use the tails of the distribution to estimate the probability of future extreme events.  However,
the estimation of the parameters of the distribution would be heavily influenced by the bulk of
the past claims data, which is likely to be non-extreme.  So, if the insurer uses the fitted
distribution to estimate the probability of future extreme events, such events may be
underestimated.  Better modelling of extreme events can be done by considering distributions
that are fitted specifically to the tail of a dataset rather than to the entire dataset.

In Section 1, we discuss tail events and in Section 2, we explain how extreme value theory can
help with fitting a distribution to tail events, with an overview of the two main approaches:

1. the block maxima approach (leading to the generalised extreme value distribution), which
is covered in detail in Section 3

2. the threshold exceedances approach (leading to the generalised Pareto distribution),
which is covered in detail in Section 4.

Note the following advice in the Core Reading:

Beyond the Core Reading, candidates should be able to recommend a specific approach
and choice of model for the tails based on a mixture of quantitative analysis and graphical
diagnostics.  They should also be able to describe how the main theoretical results can be
used in practice.
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Module 20 – Task list

Task Completed

1
Read Section 1 of this module and answer the self-assessment
questions.

2
Read:

 Sweeting, Chapter 12, pages 286 – 293

3

Read the remaining sections of this module and answer the self-
assessment questions.

This includes relevant Core Reading for this module.

4 Attempt the practice questions at the end of this module.

5 Review the Module Summary.
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This page is deliberately left blank
so that you can easily remove and use the task list.
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1 Tail events and modelling

Events that occur with low frequency and high severity can have a devastating impact on
companies, investment funds etc.  These events are modelled using the tail of a
distribution.  Given their high impact, it is essential that they are modelled accurately.  For
this reason, much research has been focused on this modelling.

Coefficients of tail dependence have already been introduced in Module 18.

Recall that a coefficient of tail dependence measures the strength of dependence between two or
more variables in the tail of a multivariate distribution.

1.1 Low frequency / high severity events

Low frequency / high severity events can have a devastating impact on companies and
investment funds.  However, their low frequency means that little data exists to model their
effects accurately.

The financial crisis (‘credit crunch’) that started in 2007 is an example of a low frequency /
high severity event.  Stock market falls occur with regularity and credit spreads have also
widened historically (eg after the LTCM bailout in 1998).  However, the financial crisis
generated more extreme movements in equity values and credit spreads than had been
seen for over 20 years previously.  Indeed, there have been few events of such extremity in
the last 100 years.

Question

List other low-frequency high-severity events you can recall.

Solution

 the COVID-19 pandemic, starting March 2020

 wildfires (eg 2017-2018 in Californian, 2019-2020 in Australia)

 hurricanes and typhoons (eg Hurricane Ida in the US in August 2021, Hurricane Ian in
Florida September 2022, Philippines November 2020, Japan August to October 2019, )

 severe flooding (eg Germany and Belgium in July 2021, Pakistan Aug 2022)

 earthquakes (eg Turkey Jan 2020)

Modelling the full distribution allows the tail to be modelled.

This can overcome the lack of data from severely stressed time periods, ie the data from
both stressed and non-stressed periods is used to fit the distribution.

However, it is important to ensure that the form of the distribution is correct in the tails.
Typically, financial data is much more narrowly peaked and has fatter tails than the normal
distribution (that is, the data is leptokurtic).  Thus, when equity values are modelled,
extreme events occur more frequently than predicted by the normal distribution: hence, the
normal distribution may be of limited use for modelling low frequency / high severity events.
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As an example, in Module 16, we discussed how the t-distribution has fatter tails than the normal
distribution.

Subject CS2 covers measures of ‘tail weight’, which can be used to compare the tails of
distributions, ie measures of how quickly the (upper) tail of a PDF tends to 0.  For example, the
limiting value, as x   , of the ratio of two PDFs can be used to determine which distribution has
the lighter or heavier tail.  This is called the limiting density ratio.

Measures of tail weight are not covered in Subject SP9 so we don’t recommend that you learn the
details.  However, you may find it useful as background to recall that such measures exist.

The fat tails that are observed in financial data are normally the result of two factors:

1. returns are heteroscedastic (that is, the volatility varies over time in a stochastic
way)

2. the innovations in a heteroscedastic model are best modelled using a fat-tailed
distribution.

However, even if a fat-tailed distribution is fitted to the whole of the dataset, a poor job
might be done of fitting the tails of the data, since the parameter estimates are so heavily
influenced by the main bulk of the data in the middle of the distribution.

Fortunately, better modelling of the tails of the data can be done through the application of
extreme value theory.
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2 Extreme value theory approaches

2.1 Defining what is extreme

One approach is to consider an ‘extreme value’ as being the maximum value in a set of n losses.

Under such an approach  1 2max , , ,M nX X X X   is referred to as a block maximum.

Alternatively, we can consider all losses that exceed a certain threshold amount as
being ‘extreme’.

2.2 Limiting behaviour

If we are dealing with losses that have typical sizes, ie ones whose values come from the central
part of the distribution, we can make use of the Central Limit Theorem, which tells us that the

standardised value of the average loss, X
n



 , can be approximated using a normal distribution.

Here, X  is the mean of a set of n values taken from a loss distribution that has mean   and

variance 2 .

However, the most financially significant part of a loss distribution is usually the right-hand tail
where the large losses occur.  These are the extreme values of the distribution.  So, is there a
similar way to approximate the behaviour of the extreme values in the tail of the distribution?

Returning to the idea of a block maximum, as introduced above,  1 2max , , ,M nX X X X  , if we

look at a number of such blocks then these maxima can be standardised in a similar way, ie we

calculate expressions of the form M n

n

X 



.  These standardised values can be approximated by a

type of extreme value distribution.

A similar result also holds if we consider the expected size of losses that exceed a certain
threshold amount.

The key idea of extreme value theory is that there are certain families of distributions (the
generalised extreme value and generalised Pareto) which describe the behaviour of the tails of
many distributions.

Extreme value theory has two main results, which may be roughly stated as follows:

Result 1 – block maxima

The distribution of the standardised block maxima  1 2max , , ,M nX X X X   is approximately

described by the generalised extreme value (GEV) family of distributions if n is sufficiently large.
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Result 2 – threshold exceedances

The tail of the distribution above a threshold,  |P X x u X u   , can be approximated, for large

values of u , by the generalised Pareto distribution (GPD).

It is these results and the properties and applications of the resulting distributions that we will
consider in the following sections.

Both the block maxima approach and threshold exceedance approach require large amounts of
data to be used in practice.
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3 The generalised extreme value (GEV) distribution

Just as the normal distribution proves to be the important limiting distribution for sample sums or
averages, as is made explicit in the Central Limit Theorem, the generalised extreme value (GEV)
family of distributions proves to be important in the study of the limiting behaviour of sample
extremes.

3.1 Extreme values theorem (EVT)

We are interested in the distribution of  1 2max , ,...,M nX X X X  where each iX  is an observed

loss.  If the losses are independent and identically distributed (iid), with cumulative distribution
function F :

   

     

 

 

 

1 2

1 2

1

,  ,  ... ,

...

M n

n

n

n

n

P X x P X x X x X x

P X x P X x P X x

P X x

F x

F x

    

   

   

   



We can standardise this using sequences of real constants 1 ,..., 0n    and 1 ,..., n  , and
consider the limit as n increases:

   lim lim nM n
n n

n nn

X
H x P x F x

  
 

 
    

 

This result applies for all commonly used statistical distributions from which the iX  may originate.

Question

Determine  H x , the limiting distribution for the standardised maximum loss from a set of

observations, where the individual losses are distributed exponentially (ie   1 xF x e   ), by

setting 1


  (ie n  for all n ) and 1
lnn n


 .  (Hint: lim 1

n
x

n

x
e

n

   
 

 by definition.)

Solution

If we set 1


  (ie n  for all n ) and 1
lnn n


  then we have:

ln
n

x n
x 

 
  
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Hence, since   1 xF x e   , we have:

  ln
n

x nF x F 

    

 

ln

1
x n

e



   

  

1
1 xe

n
 

Therefore,   1
nx

n
n

e
F x

n
 

 
    

 
, where lnx n

and so, since lim 1
n

x
n

x
e

n

   
 

 by definition, the distribution of the standardised maxima is:

 lim
xn e

n
n

F x e 



  .

This limiting CDF is the CDF of the standard Gumbel distribution, which you may recall from
Subject CS2.  The standard Gumbel distribution is a particular type of generalized extreme value

distribution, resulting from the case where  expiX �  and the sequences of standardising

constants are 1
lnn n


  and 1

n 
 .

More generally, for all commonly used statistical distributions from which the iX  may originate,
and corresponding appropriate sequences of standardizing constants, we find that:

   lim lim nM n
n n

n nn

X
H x P x F x

  
 

 
    

 

converges to a generalised extreme value (GEV) distribution.

3.2 The CDF of the GEV distribution

The generalised extreme value (GEV) family of distributions has three parameters:

1.   is the location parameter.

2. 0   is a scale parameter.

These two parameters just rescale (shift and stretch) the distribution.  They are analogous
to, but do not usually correspond to, the mean and standard deviation.

3.   is the shape parameter.
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The cumulative distribution function for the GEV family is:

1
( )

exp 1 0

( ) lim ( )

( )
exp exp 0

M n
n n

x

X
H x P x

x

  



 







  
   

     
   

    


   
    

  

The CDF for the standard GEV distribution is given by 0   and 1  .

The sign of   (positive, negative or zero) is important and leads to three corresponding three
distributions (which are named after their original discoverers).

Question

Describe the three distributions that form the GEV family.  (Hint:  name them, sketch examples,
refer to any bounds and give examples of their applications.)

Solution

If 0  , the distribution is a Gumbel GEV distribution.  This has a tail that falls exponentially.

For 0  , the distribution is known as a Weibull GEV distribution.  This has a finite upper bound
indicating an absolute maximum.  We might expect to fit such a distribution to natural
phenomenon, for example:

 temperature

 wind-speed

 the ages of a human population (indicating an upper bound to possible age)

or where a loss was certain not to exceed a certain value (for example, if such losses were
reinsured).

Note that this is not the same Weibull distribution as the one in the Tables, which you may be
familiar with from earlier subjects.

For 0  , the distribution is a Fréchet-type GEV distribution.  The tails of the distribution become

heavier (with infinite variance if` 1
2

  ) and follow a power law.  This is typically the subset of

distributions most suitable for modelling extreme financial (loss) events.  These distributions have
a lower bound since:

x takes values such that
 

1 0
x 



  x x
  
 


      .
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Example graphs are sketched below.

GEV density function examples
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3.3 Underlying distributions

If we know the form of the underlying loss distribution (eg exponential), it is possible to work out
the limiting distribution of the maximum value.

We can then classify the resulting distribution into one of the three types according to the sign
of  , as shown in the table below.

GEV distributions (for the standardised maximum value)

corresponding to common loss distributions

Type WEIBULL GUMBEL FRÉCHET

Shape parameter 0  0  0 

Underlying Beta Chi-square Burr

Distribution Uniform Exponential F

Triangular Gamma Log-gamma

Log-normal Pareto

Normal t

Weibull (*)

Range of values
permitted x




  x    x



 

* Unhelpfully, the extreme value distribution corresponding to the Weibull distribution from the
Tables is actually of the Gumbel type!

Mathematicians have devised various sets of criteria that can be used to predict which family a
particular distribution belongs to.  As a rough guide:

 underlying distributions that have finite upper limits (eg the uniform distribution) are of
the Weibull type (which also has a finite upper limit).

 ‘light tail’ distributions that have finite moments of all orders (eg exponential, normal, log-
normal) are typically of the Gumbel type

 ‘heavy tail’ distributions whose higher moments can be infinite are of the Fréchet type.

3.4 Fitting a GEV distribution

Since the GEV distribution describes the distribution of maximum values, we need to subdivide
the available data into groups (or blocks) and calculate the maximum for each group.
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Return levels and return periods

The GEV distribution can be used to analyse a set of observed losses in two different ways.

Question

Describe the return-level and return-period approaches, and discuss the choice of the number of
blocks under the return-level approach.

Solution

The GEV distribution can be used to analyse a set of observed losses in two different ways.

1. select the maximum observation in each block (the return-level approach)

2. count the observations in each block that exceed some set level (the return-period
approach).

The larger the number of blocks, the fewer observations there are in each block.  If using the
return-level approach this gives less information about extreme values (1-in-a-hundred events
rather than 1-in-a-thousand, say).  However, it gives more ‘extreme’ values to fit against and so
reduces the variance of parameter estimates.

Alternatively, using fewer blocks (with more observations in each) gives more information about
the extreme values under the return-level approach, but the variance of parameter estimates is
greater.

Parameterisation

Once the data selection has been done, we can estimate the parameters for the GEV distribution
using maximum likelihood estimation or the method of moments.

For example, if we have data divided into m  blocks of size n  and denote the maximum of the jth

block by njM , ie we have observed maximum data 1 ,...,n nmM M .

Using the density function of the GEV distribution,  h x , we can calculate the log-likelihood

to be:

   
1

ln , , ; ln
m

ni
i

L h M  


M

This can be maximised subject to the constraints that 0   and 1 0niM 



 

  
 

.
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3.5 Advantages and disadvantages of the GEV distributions

We can also use GEV distributions to investigate the limiting distributions for the minimum values

of a distribution.  If  H x  is the limiting distribution for the standardised maximum value for a

particular  , then  1 H x   is the limiting distribution for the standardised minimum value from

the same original distribution.

Question

Outline two key limitations of the GEV approach.

Solution

1. A key disadvantage of the GEV approach is that a lot of data (and hence information) is
lost (as everything apart from the maxima in each block is effectively ignored).

2. The choice of block size can be subjective, and represent a compromise between
granularity (eg 1-in-100 or 1-in-1000 estimates) and parameter uncertainty.
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4 The generalised Pareto distribution (GPD)

As an alternative to focusing upon a single maximum value, we can consider all the claim values
that exceed some threshold as extreme values.

4.1 Threshold exceedances

If we let X  be a random variable for losses, with cumulative distribution function, F , then the
excess distribution over the threshold, u, has the distribution function:

       
 1u

F x u F u
F x P X u x X u

F u
 

    


for 0 Fx x u    where Fx   is the right endpoint of X .

More generally we find that, for a large class of underlying iid distributions of loss data, as the
threshold increases, ie as Fu x , the distribution of the threshold exceedances will more closely
resemble a generalised Pareto distribution.

4.2 The CDF of the GPD

The GPD is a two-parameter distribution with CDF:

 
1 1 0

1 exp 0

x

G x
x









         
  
    

 

0   is a scale parameter and   is the shape parameter.

The CDF for the standardised GPD is given by setting 1  .

Question

Describe the GPD distribution.  (Hint: sketch examples and refer to any bounds.)

Solution

For the GPD:

 there is a lower bound ( 0x  ) when 0 

 there is also an upper bound ( 0 x    ) when 0 

 if 0   then the GPD becomes the Pareto distribution

 if 0   then the GPD becomes the exponential distribution.
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The mean of the GPD can be calculated as follows (provided 1  ):

 
1

E X






.

It can also be shown that if 0   then  E kX   for k  .  For example, if 2   then we have

 2E X  , ie we have infinite variance.

Examples of GPD density functions are sketched below:

4.3 Asymptotic property

It can be shown that when the standardised maxima of a distribution converge to a GEV
distribution (as discussed in the preceding section, this is true for all commonly used statistical
distributions), the excess distribution converges to a GPD distribution with an equivalent shape
parameter  .
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4.4 Mean excess loss function

A useful function, which will later help us fit a GPD to a set of observed losses ( , ,i NX X ), is the
mean excess loss function.

The theoretical mean excess loss function is defined as:

 E X u X u 

The empirical mean excess loss function,  e u , is defined as:

 
   

 
1

1

N

i i
i

N

i
i

X u I X u
e u

I X u





 









Recall that  iI X u  is an indicator function that takes the value 1 if iX u and 0 otherwise.

The distribution of the empirical mean excess loss function can be visualised by evaluating this
function (iteratively), setting iu X  for each of 1,...,i N , and plotting the corresponding N

points   ,i iX e X .

Example – mean excess plot

An example mean excess plot is shown below:

On this graph, each of the observed losses has been treated as a potential threshold (on the x-
axis), and the value of the mean excess loss function, based on that threshold, has been
calculated and plotted (on the y-axis).
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Question

Derive the theoretical mean excess loss function if  X Exp � .  (Hint: the exponential distribution

exhibits the ‘memoryless’ property.)

Solution

The exponential distribution exhibits the ‘memoryless’ property, ie the expected future waiting
time for an event to occur is independent of the waiting time already elapsed.

So, if  X Exp � , then:

       uF x P X u x X u P X x F x      

So the excess distribution is also  Exp   and the theoretical mean excess loss function is

  1
|E X u X u


   , which is independent of the value of u .

4.5 Fitting a GPD

Here, rather than deciding on the periods over which we are taking maxima (which is the key
decision on the underlying data for the GEV) we are required to decide on the threshold u , above
which we will approximate the underlying distribution with the GPD.

The choice of u  should reflect the context.  For example, it might represent the retention limit
over which a reinsurer might be liable to cover claims against an insurer.

Typically u  is likely to be around the 90-95th percentile of the complete distribution, as a lower
threshold would bring into consideration some values that are not in the tail (ie not extreme
values).

Question

Discuss how to choose the threshold above which the GPD should be fitted to the
observed excesses.  (Hint: consider trade-offs and a graphical method of selection.)

Solution

There is a trade-off between the quality of the approximation to the GPD (good for high u )
against the level of bias in the fit we achieve (good for low u ).

If we pick a high value for u , the asymptotic properties apply more accurately (because we are
‘closer to the right endpoint of the distribution, Fx ’).  However, we will have relatively few data
values in this region to work with, so our estimates may be unreliable.
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Recall that the asymptotic property is that when the maxima of a distribution, the niM , converge

to a GEV distribution, then the excess distribution,  uF x , converges to a GPD distribution with an

equivalent shape parameter  .  It can be shown that under these circumstances the theoretical

mean excess loss function,  |E X u X u  , will become a linear function of .u   So, if we plot the

empirical mean excess loss function,  e u  against u , then we should see linearity appear for

higher values of u .  It can be shown that the slope of this line is related to the shape parameter 
therefore facilitating the fitting of a GPD distribution to the empirical excess distribution.

So, in order to select a suitable threshold (above which we will fit a GPD to the data), we are
looking for the empirical mean excess loss function to be linear in u .

In the previous solution, the theoretical mean excess loss function was constant (ie its slope was
zero) for an exponential loss distribution (which has shape parameter 0  ).  However, for other
loss distributions, the mean excess loss function will slope upwards if   is positive and
downwards if   is negative.

Example – mean excess simulations

Here is a selection of mean excess plots we have simulated.  Each of the simulations is based on
the same underlying exponential distribution.  As you can see, there is a large random element to
their appearance and many of them are far from horizontal.  This illustrates the difficulty of
selecting a suitable threshold and hence value of  .
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Example – fitting a GPD

The graph below illustrates possibilities for choices of thresholds for the mean excess example
sketched earlier.

The longest (solid) line is a least squares linear regression on the whole data set.  The shorter
(dotted) line is a regression on just the tail (above 100,000).  However, if the final five data points
are ignored, as they distort the picture, then a regression produces the shortest (dashed) line.
The slopes, and therefore the fitted GPD parameters, are very different – demonstrating the
subjectivity of this part of the fitting process.

4.6 Parameterisation

Above the chosen threshold, we can fit a GPD to the selected data by using standard techniques
such as maximum likelihood estimation or the method of moments to calculate   and  .

Assume that our original data, before the application of the cut-off threshold u , is

 1 , , nX X X  , and is assumed to be independent and identically distributed.

Let j jY X u   denote the amount of the excess loss when the threshold is exceeded.

We assume the jY  follow a GPD, not the jX .  We will assume a random number of observations

uN  exceed the threshold.
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If we attempt to fit a GPD with parameters   and  , and probability density function  g x , to

the data  1 2,  ... nY Y Y  then we get the following log-likelihood function:

   
1

ln , ; ln
uN

j
j

L Y g Y 




The domain of valid values for x  will depend on the values of the parameters   and .

The maximum likelihood methodology is used in practice for both independent and dependent
data.  Care must be taken to understand the shortcomings and limitations of the method when
dependent data is used.
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Module 20 Summary – Extreme value theory

Low frequency / high severity events

Lack of data (especially from severely stressed time periods) makes such extreme events
hard to model accurately.  Modelling the full distribution can help overcome this difficulty.
But, the form of distribution may still be incorrect in the tails, eg where:

 the ‘true’ distribution is more skewed or leptokurtic than is indicated by the available
data

 the parameter estimates are inappropriately influenced by the main bulk of the data
in the middle of the distribution

 features change over time, eg heteroscedasticity, structural breaks.

Better modelling of the tails of the data can be done through the application of extreme
value theory.

The generalised extreme value distribution

If:

 losses iX  are iid with cumulative distribution function, F

  1 2max , , ,M nX X X X   are the block maxima

 1 ,..., 0n    and 1 ,..., n   are a suitable sequence of real constants

then, if n  is sufficiently large, the distribution of the standardised block maxima M n

n

X 



 is

approximately described by the generalised extreme value (GEV) family of distributions:

   lim lim nM n
n n

n nn

X
H x P x F x

  
 

 
    

 
 .

The three parameters of the GEV family determine:

 location ( )

 scale (  )

 shape ( ).

The GEV distribution can be used to analyse a set of observed losses in two different ways.

1. select the maximum observation in each block (the return-level approach)

2. count the observations in each block that exceed some set level (the return-period
approach).
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Parameters for the GEV distribution can be estimated using MLE or the method of moments.
The choice of the number of blocks determines the trade-off between the granularity of
information provided and the variance of parameter estimates.

A disadvantage of this approach is that it ignores a lot of data (all non-maxima).

The generalised Pareto distribution

If we let X  be a random variable for losses, with cumulative distribution function, F , then
the excess loss distribution over the threshold, u, has the distribution function:

       
 1u

F x u F u
F x P X u x X u

F u
 

    


for 0 Fx x u    where Fx   is the right endpoint of X .

More generally we find that, for a large class of underlying iid distributions of loss data, as
the threshold increases, ie as Fu x , the distribution of the threshold exceedances will
more closely resemble a generalised Pareto distribution.

The two parameters of the GPD family determine scale (  ) and shape ( ).

The empirical mean excess loss function is defined as:

 
   

 
1

1

N

i i
i

N

i
i

X u I X u
e u

I X u





 









To select a suitable threshold (above which a GPD is fitted to the data), determine the

lowest threshold above which the empirical mean excess loss function,  e u , is linear in u .

The slope of this line is related to the shape parameter  .  Typically, the chosen threshold is
likely to be around the 90-95th percentile of the complete distribution. Above this
threshold, a GPD can be fitted to the selected data by using MLE or the method of moments
to determine the parameters.

There is a trade-off between the quality of approximation to the GPD (good for high
thresholds) and level of bias in the fit (lower for lower thresholds).

Asymptotic property

When the maxima of a distribution converge to a GEV distribution (which is the case for all
commonly used statistical distributions), the excess distribution converges to a GPD
distribution with an equivalent shape parameter  .



SP9-20: Extreme value theory Page 25

© BPP Actuarial Education

Module 20 Practice Questions

20.1 (i) Explain what is meant by an extreme event and give two examples. [2]

(ii) Explain why it is important, in an enterprise risk management context, to consider
extreme events separately from other types. [3]

[Total 5]

20.2 (i) Describe the generalised extreme value (GEV) distribution, given that the key formula is:

1
( )( ) lim ( ) exp 1 0M n

n n

X xH x P x
   

 





 
   

       
  

 

(ii) Describe how the GEV distribution can be used to model extreme events in an ERM context.

(iii) Outline an alternative approach that can be used in place of the GEV methodology.  (You
are not required to give formulae.)

20.3 (i) Define the theoretical mean excess loss function.

(ii) Derive a formula for the mean excess loss function when the underlying loss distribution
is exponential with mean 1 /  .

(iii) Describe the overall shape that the mean excess loss function would exhibit for each of
the following underlying loss distributions:

(a) exponential

(b) normal

(c) uniform.

20.4 The claim amounts in a general insurance portfolio are independent and follow an exponential
distribution with mean £1,250.

(i) Calculate the probability that an individual claim will exceed £5,000. [2]

(ii) Calculate the probability that, in a sample of 100 claims, at least one claim will exceed
£5,000 using:

(a) an exact method

(b) an approximation based on the Gumbel (extreme value) distribution. [5]

You are given that, for an exponential distribution with parameter  , the approximate

distribution of the standardised  1max , , nX X  for large n is a Gumbel distribution with

distribution function    ( ) exp exp /nH x x       where  1
lnn n


 and 1


 .

(iii) Describe the extent to which the two key assumptions made in the calculations in (ii) are
likely to be borne out in practice. [3]

[Total 10]

Exam style

Exam style
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The solutions start on the next page so that you can
separate the questions and solutions.
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Module 20 Solutions

20.1 (i) What is an extreme event?

Extreme events are outcomes that have a low probability of occurrence but involve very large
sums of money. [½]

These are high severity events that occur in the right-hand tail of the loss distribution. [½]

In an insurance context, they may arise as a result of a single cause that has a high financial cost
(eg a personal injury claim or complete destruction of a building) … [½]

… or as an accumulation of events with a related cause (eg flood damage to a large number of
houses in one town). [½]

Extreme events can occur in contexts other than insurance claims, eg financial losses caused by a
stock market crash or default of a company or the ‘credit crunch’. [½]

[Maximum 2]

(ii) Why are extreme events considered separately?

The majority of risk events fall within the main body of the fitted loss distribution and can usually
be modelled accurately by one of the standard statistical distributions. [½]

However, losses caused by extreme events fall in the right-hand tail of the distribution and often
arise through a different cause than the smaller losses …  [½]

… for example, many small operational losses are caused by human error; extreme operational
loss events often have other causes, eg terrorism. [½]

As a result, the extreme events are usually considered to come from a different statistical
distribution, ie they are outliers to the main loss distribution. [½]

The extreme events usually involve the highest monetary amounts and therefore it is particularly
important to assess them correctly.  [½]

Models of the extreme events are important for assessing the impact on a company of
unexpected conditions (eg the 9/11 terrorist attacks and their impact on the world’s financial
markets) … [½]

… and can help with disaster recovery; business continuity planning. [½]

There is usually a lack of past data on extreme events and so a different approach to modelling
needs to be taken, eg dreaming up ‘doomsday’ type scenarios.  [½]

[Maximum 3]
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20.2 (i) GEV distribution

The standardised maximum value ( MX ) in a sample of n iid random variables ( 1 2, ,..., nX X X )
tends to a particular distribution as the sample size increases.  This is called the generalised
extreme value (GEV) distribution.

The key parameter is the shape parameter  .

When 0  , we have the Fréchet class of distributions, which is the limiting form for ‘heavy
tailed’ underlying distributions with a finite lower bound, such as the Pareto distribution.

When 0  , we have the Weibull class of distributions, which is the limiting form for underlying
distributions with a finite upper bound, such as the uniform distribution.

When 0  , we have the class of Gumbel distributions, which is the limiting form for most other
underlying distributions that have finite moments, such as the normal and lognormal
distributions.

In this case, the distribution function is found by taking the limit as 0  , which gives:

  ( ) lim ( ) exp exp ( ) /M n
n n

X
H x P x x


 




     

The parameters   and   are location and scaling factors, respectively.  (These will differ
depending on the underlying distribution.)

(ii) Using the GEV distribution to model extreme events

Extreme loss events correspond to the maximum values experienced over a period, so we might
expect them to conform to a GEV distribution.

We can calculate the maximum loss event from past data by dividing it into blocks
(eg one block for each year) and calculating the maximum within each block.

We can analyse a set of observed losses in two different ways:

1. divide the data into blocks (eg one block for each year) and calculating the maximum
within each block (the return-level approach)

2. count the observations in each block that exceed some set level (the return-period
approach).

We can then estimate the parameters for a GEV distribution using standard statistical methods,
such as the method of moments or maximum likelihood estimation.

The fitted distributions can then be used to calculate percentiles, means and variances for the
distribution of the required variable (eg maximum future claim amounts) and could also be used
in simulations.
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(iii) Alternative approach

As an alternative to focusing upon a single maximum value, we can consider all the losses that
exceed some threshold.

A similar theory to GEV predicts that, for large samples, these amounts should conform to a
generalised Pareto distribution (GPD).

In order to fit the tail of a distribution we need to select a suitably high threshold and then fit the
GPD to the values in excess of that threshold.

This method has the advantage that it uses a larger part of the data and models all the large
claims above the threshold, not just the single highest value.

Various methods, such the method of moments and maximum likelihood estimation, have been
devised for estimating the parameters of the distribution and for testing the results for goodness-
of-fit.

20.3 (i) Mean excess loss function

The theoretical mean excess loss function for a random variable X  is defined by:

 |E X u X u 

where u  is the threshold amount.

Typically, X  denotes the size of the loss event that is assumed to come from a particular loss
distribution.

(ii) Formula

If X  has an exponential distribution with mean 1 /  , then:

( ) x u
u

P X u e dx e 
    

The conditional probabilities above the threshold are then:

( )

( & )
( | )

( )

( )
( )

x u

u

x

P X x u X u
P X x u X u

P X u

P X x u
P X u

e

e

e







 





  
   



 








It follows that:

Pr( | ) 1 xX u x X u e     
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So the conditional distribution of the excess loss |X u x X u    is ( )Exp  , which has mean 1 /  .

In this case, the theoretical mean excess loss function has a constant value   1
|E X u X u


   .

(iii) Shape of the mean excess loss function

(a) Exponential

We saw in part (ii), that when the underlying distribution is exponential, the mean excess loss
function has a constant value.  Therefore,  its graph would be horizontal.

(b) Normal

Unlike the exponential distribution, which is positively skewed, the normal distribution is
symmetrical and tails off more quickly than the exponential distribution on the right-hand side.

Therefore, if the underlying distribution is normal, the mean excess loss function will also tail off
(decrease) as the threshold increases (but always remaining positive).

(c) Uniform

The uniform distribution has a finite upper limit.  Once the threshold reaches this point, the
excess will always be zero.  Before that point, the mean excess loss function will decrease linearly.

20.4 (i) Probability that an individual claim will exceed £5,000

The claims X  follow an exponential distribution with mean 1
1,250


 .

Using the formula for the distribution function of an exponential random variable from the Tables,
we find that:

5,000 4( 5,000) 1 P( 5,000) 1 (5,000) 0.018XP X X F e e         

So the required probability is 1.8%. [Total 2]

(ii) Probability that at least one claim will exceed £5,000

(a) Exact method

We require the probability that  1 100max , ,X X  is greater than £5,000.  We can calculate this

exactly by considering the complementary event:

   

   

 

1 100 1 100

1 100

1004

max , , 5,000 5,000, , 5,000

5,000 5,000

1 0.157

P X X P X X

P X P X

e

     

    

  

 

 [1]

So the required (exact) probability is 1 0.157 84.3%  . [1]



SP9-20: Extreme value theory Page 31

© BPP Actuarial Education

(b) Approximate method

As the approximate distribution of the standardised values of  1 100max , ,X X  is a Gumbel EV

distribution with distribution function    ( ) exp exp /nH x x      , this means that:

     100exp exp /H x x     

The required parameter values are:

100 1,250ln100 5,756.46     and 1,250  [1]

So:     
 

5,000 5,756.46 /1,250

0.6052

5000 exp e

exp 0.160

H

e

  

  

[1]

So the approximate probability is 1 0.160 84.0%  . [1]
[Total 5]

(iii) Assumptions

The two key assumptions here are that the claims come from an exponential distribution with
mean £1,250 and that they are statistically independent. [½]

In practice we cannot know the precise form of the true distribution.  Both the type of distribution
and the parameters must be estimated based on past claims data. [1]

These calculations concern the maximum claim amounts and it is often found that these follow a
different distribution from claims in the main body of the data. [½]

The claims within a portfolio may not be independent.  The severity of claims is likely to be
affected by a number of underlying causes (eg the weather) that will affect the whole portfolio.
However, some claims may be independent, eg claims from car accidents across a large
geographically-diversified portfolio. [1]

[Total 3]
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